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Abstract

A class of the one-dimensional SchrSdinger operators L with the symmetry algebra LB + =

q±2B_L, [B +, B-] = 7)_(L), is described. Here B _ are the 'q-ladder' operators and Ply(L)

is a polynomial of the order N. Peculiarities of the coherent states of this algebra are briefly
discussed.

1 Introduction

Exactly solvable spectral problems are of great importance. They have numerous applications in

classical and quantum mechanics. In the last decades the theory of solitons once again exhibited

their universal character. However, the definition of the notion of solvability (or integrability) itself

is quite delicate. In particular, it involves the definition of functions which are allowed to enter the

solution of the problem (in a sense these are two complementary things - it is common to define

functions as solutions of some equations). Let us take for example the standard one-dimensional

SchrSdinger equation:

L_l,(x) = (-d21dx 2 + u(x))_b(x) = ,_bCx), (1)

endowed with some boundary conditions. The widely used tacit definition of solvability of this

spectral problem consists in the requirement for _b(x) to be a finite sum of the hypergeometric

functions 2Fl(a, b; c; x) [1], or of their descendants. On the one hand, the 2F1 indeed occupies a

distinguished place among the classical special functions, but on the other hand, there axe more

complicated objects whose global structure has been well understood.

In the theory of nonlinear evolution equations the smooth bounded potential u(x) is said to be

solvable if it has a spectrum consisting of the N + 1 permitted bands, N of the finite width and

one infinitely large (these are the regions of ,_ for which the wave functions _b(x) are bounded).

In some cases this condition leads to the Lam_ equation, which is a simplest generalization of the
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second order differential equation for hypergeometric function. Another type of functions with

known global analytical properties can be defined with the help of the nonlinear second order

differential equations: the Painlev_ transcendents PI-PVI are the simplest examples. Different

and more rich classes of functions are defined by the second order (linear or non-linear) finite-

difference equations, an example is given by the basic, or q-hypergeometric function. In the latter

two cases, the corresponding special functions may be taken for definition of potentials and then

the condition of solvability of (1) can be thought as the requirement for wave functions _b(z) to

be related to u(z) by some simple formulae which do not lead to the essentially new objects.

This short discussion and the systems to be described below demonstrate that the problem of

classification of all exactly solvable problems is far from completion even for a simple equation

(I).

The integrability of a problem is related to its symmetry properties. Unfortunately, most of

the symmetries are "hidden" and, as a result, the group-theoretical treatment of special functions

often emerges as a secondary problem. Rarely new function was introduced primarily from the

symmetry principles. The situation however changes when the classification problem is dealt with.

The so-called characterization theorems are targeted to the enumeration of specific properties

which define a taken system uniquely within the given class of equations. Using them one can

see what properties should be abandoned in order to get more general systems. E.g., one may

ask what are the most general potentials u(z) for which there exist a differential operator A of

the order N such that [L, A] = 0. For odd N this happens to lead to the finite-gap potentials

mentioned above (even N cases contain generically a functional non-uniqueness).

Recently, the characterization of all potentials leading to the ordinary ladder algebra:

[L,AI = ,A, , > 0, (2)

where A is the N-th order differential operator, has been given in [2]. For N = 1 it is easy to find

that u(z) o¢ z _, i.e. a harmonic oscillator potential. For N = 2 one gets the singular oscillator

potential u(z) o¢ crz 2 +/_/z 2. The N = 3 case corresponds to the quite complicated situation

when u(z)involves the Painlev6 IV transcendental function [21.
Already from (2) one expects that the spectrum of Hamiltonian L is purely discrete and

equidistant. This, however, depends on the structure of zero modes of A. If all of them are

physical eigenstates of L with different eigenvalues, and the conjugated operator A + does not

break normalizability, then one has a spectrum composed from N independent arithmetic series.

The wave functions are explicitly expressed through f(z), f'(z) and f f(z)dz, where f(z) is defined

by a system of N first order nonlinear differential equations, i.e. the problem is solved exactly in

the above sense. Although it is much harder to calculate physical observables of these systems than

for the potentials related to the hypergeometric function, the principally important characteristics

- the spectrum - is very simple and elegant.

The aim of this note is, however, to present even more complicated potentials than just men-

tioned ones [3-7]. The first class of them is connected with the algebra (2) but the operator A is

now a differential-difference operator [3]. The resulting potentials are more general than those of

[2] since the corresponding characterization theorem does not apply. The second class is based on

the q-deformed ladder relation:

LA = q2AL, q2 # 0, 1, (3)
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which simply can not be realized with the help of differential operators of the finite order. Note

that the limit q --_ 1 does not necessarily mean that the operator A will be an integral of motion

- there may be a diverging constant entering additively into L such that for q = 1 one gets (2)

rather than [L, A] = 0.

2 Self-Similar Potentials

Let us briefly describe the definition of potentials leading to (3). The basic tool is the factorization,

or dressing method based on the Darboux transformations. One takes a set of Hamiltonians,

Lj = -an/dz _ + uj(x), and represents them as products of the first-order differential operators,

up to some constants Aj:

d d

A+ = ---dx + fl(z)' A'_ = _x + fi(z)' (4)

L1= A; + AJ,
i.e. uj(z) = f_(x) - f;(x) + Ai. Then one imposes the following intertwining relations:

(5)

LjA + = A+L._+I, ATL i = L.c+IA'_, (6)

which constrain the difference in spectral properties of Lj and L,¢+1 and are equivalent to the

equations:

AhlAi+I + )_.i+1 = A_A? + _i. (7)

Substitution of (4) into (7) yields the chain of differential equations [8]:

f;(x) + f;+x(x) + f](x) - f_+,(x) = Ai+1 - Ai = I_j, (8)

which is called the dressing chain.

The potentials we are interested in are defined by the following self-similarity constraints

imposed upon the dressing chain [3, 6]:

fi+N(X) = qfj(qx + r), Pj+N = q2pj. (9)

The simplest example, defined by the reduction fi(x) = qif(qix), "_i = q21,_, has been found in

[4].
At the operator level, the relations (9) lead to the SchrSdinger operators with non-trivial

q-deformed symmetry algebras. Let us consider the products:

M + = A+A + A +j i+1"." 1+N-1,

which generate the interwinings

LjM + = M + Lj+N,

M_" = A-_+N_I... A'f+lA'f ,

M 7 Lj -- Lj+NM_-.

The structure relations complimentary to (11) look as follows:

N-1 N-1

M + M; = 1"I (Li -Ai+k), Mf M + = 1"I (LJ+Jv - Ai+k).
k=0 k=O

(lO)

(11)

(12)
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These identities show that if the operators Lj and Lj+N are related to each other through some

simple transformation, e.g.

Lj+N = q_ULjU -1 + w, (13)

where V is an invertable operator, then the combinations B + - M+U, B_" =- V -111/17, map

eigenfunctions of Lj onto themselves, i.e. they are symmetry operators for Lj. The form of U is

restricted by the requirement that the Lj's be of the Schrhdinger form. Taking U to be the affine

transformation generator, Vf(x)U -1 = f(qx + r), fixing the indices (e.g., j - 1) and removing

them, we get the symmetry algebra [6]:

LB ± = q+2B +L, L - -d 2/dx 2 + f_(x) - f_(x) + )_, - w/(1 - q2), (14)

N N

B+B_ = 1-I(L+ w ,_k), B_B+ = 1-i(q2L+ w )_k). (15)
k=l 1 - q2 k=l 1 -- q=

For N = 1 this is a q-analog of the Heisenberg-Weyl algebra which for special values of the

parameters serves as the spectrum generating algebra [5]. For N = 2 this is a q-deformation of

the su(1, 1) algebra, and for N > 2 we get polynomial relations describing symmetries of the

self-similar potentials. Note that the limit q -+ 1 is not trivial. If the parameter r in (9) is not

zero then we get the realizations of the algebra (2) which generalize the ones described in [2].

For q _ 1 the parameter r may be set equal to zero. If the operators B + are well defined and

have N normalizable zero modes, then the self-similar potentials have spectra consisting of N

independent geometric series. Moreover, u(x)'s are reflectionless and represent initial conditions

for the infinite-soliton solutions of the KdV equation.

We conclude that the N = 1 case describes the deformation of harmonic oscillator potential,

the N = 2 case corresponds to the q-deformed conformal quantum mechanics [3], and the N > 3

cases correspond to the q-deformation of the Painlev_ type equations.

An interesting situation takes place when the parameter q is a root of unity, i.e. qn = 1.

Generically these cases are related to the hyperelliptic potentials, the N = 1 system has been

analyzed in detail in [7]. Depending on whether q is a primitive root of unity of odd or even

degree, the solution may be unique or non-unique. The q = -1 system exists only when the initial

condition f(0) = 0 is imposed and it provides a non-standard realization of the Heisenberg-Weyl

algebra. Indeed, the equation arising from (8), (9) at N = 1,q = -1:

d

d---_(f(x ) - f(-x)) + f_(x)- f2(-x) -- p, (16)

has the general solution f(x) = px/2. This corresponds to the operators B + satisfying [B-, B +] =

p with the explicit form:

B- = P(dldx + I_zl2), B + = (-dldz + i_xl2)P , (17)

where P is the parity operator PC(x) = ¢(-x).

The general q3 = 1 solution exists for arbitrary initial condition and is given by the equi-

anharmonic Weierstrass function: uj(x) = 2p(x + f_j), (p,)2 = 4(p3_ 1), where 12j+s = 12j, and

qif_j = w_ - the real semiperiod of the doubly periodic function p(x). The analytical solutions at

q4 = 1 exist for special initial condition but they contain functional non-uniqueness. The particular
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subcase of the q4 = i system isdefined by the (pseudo-)lemniscaticWeierstrass function satisfying

the equation (p,)2 = 4fp35= p. So, the group-theoreticaltreatment of the SchrSdinger equation

with these specificellipticfunction pcrtentialsnaturally leads to the q-oscillatoralgebra at roots

of unity.Note that the algebra of symmetry operators in these cases does not have the spectrum

generating meaning.

3 Coherent States of the q-Ladder Algebras

Coherent states are interesting objects of quantum mechanics [9]. Originally proposed for the

harmonic oscillator potential, eventually they were generalized in many directions. Let us discuss

briefly coherent states of the algebra (14), (15) which we define as eigenstates of the "annihilation"

operator B-:

B-Oa(x) = aO_(x). (18)

Looking at the definition of B- one can realize that this is quite complicated functional equation.

The simplest case (N = 1) has the following explicit form:

(d/dx + f(x))¢,_(x) = ak/_¢,(qx), (19)

where f(x) is a smooth solution of the differential equation with the deviating argument:

d (f(x) -I- qf(qx)) + f2(x) - q2 f2(qx) -- _.

The V/_ factor appeared because we took U to be unitary operator so that (B-) t = B +. We

also assume that 0 < q2 < 1. (The q2 > 1 choice is equivalent to analytical continuation of the

q2 < 1 potentials to the imaginary axis. This brings pole singularities into the potential and, as

a result, operators B + are not well defined.) Coherent states of the q-oscillators have been widely

discussed (see, e.g., [10]), but the realization (19) is a principally new one since it deals with the

ordinary SchrSdinger equation. Unfortunately, the structure of functions Ca(x), their minimal

complete subsets, and many other things are not known at present.

As it was noticed in [7] there is a particular coherent state among ¢_(x) which happens to be

an eigenstate of the Hamiltonian! (Such situation is characteristic for the whole algebra (14), (15),

i.e. for any self-similar potential at q2 < 1.) It corresponds to the zero energy state, Lea(x) = 0,

the formal existence of which follows from the boundedness of the potential f:_oo lu(x)l dx < oo.

So, we have the following representation of the q-oscillator algebra:

B+¢d(x) = re+ia¢ct(x), r -- _/#u/(1 - q2), (20)

i.e. B* are pure complex conjugated numbers. Possible existence of such "classical" states of the

q-oscillator algebra has been noticed also (in the different context) in [11]. Since for ¢c_(z) we

have two equations: (19) with cr = re -i° and

(-d/dx + f(x))V_l¢ct(qx ) = rei°¢ct(X),
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we can remove the derivative part and get pure q-difference equation:

rlql-'/_[e-'°lqlCa(qz ) + e '° q-'_ba(q-':r)] = (f(x) + q-' f(q-' x))_bct(x), (21)

which, however, again is not easy to solve.

Finally, let us consider the case q = -1, i.e. the coherent states associated with the realization

(17). We put for convenience # = 2 and renormalize B _: _ v_B +. The tb_(x) states form a

subset of solutions of (B-)2_ba(x) = ot2_ba(x). Because (B±) 2 are purely differential operators,

one can easily solve this equation. Picking out the proper linear combination of the corresponding

two independent solutions, one can find:

_bo,(x) = 2-1/2(e-i'q4lia ) + ei_r/41 - ia)), (22)

where Ia) are the canonical coherent states of a harmonic oscillator:

Is> 2 ('_ - a)2)" (23)

The states (22) are not minimal uncertainty states for the variables x and p =__-id/dx for a # 0:

((Az) 2) = (1 - (a - a.)2 _ (a + a*)2e-'l_P)/2,

((Ap) 2) = (I + (a + a.)2 + (a - a*)2e-il_ff)/2,

((Ax)2)((Ap) 2) > 1/4,

where = x - (x), = YYoo etc. However,it is easy to construct other canonical

variables

_r=i(B+- B-)/v_=ixP, ¢b= (B+ + B-)/V_= -ipP, [_b, Tr]=i,

where P is the parity operator, for which _b_(z) minimize their uncertainties, ((A_b)2)((A_r) _) =

1/4. A detailed consideration of the properties of these coherent states will be given elsewhere

[121.

Finally, we would like to point out that the procedure of determination of potentials with fixed

symmetry properties presented here may be generalized to other spectral problems. In [13] it was

applied to the second order finite-difference equation. In that case many features of the continuous

considerations maintain but there are also few new ones. E.g., the algebras at q > 1 may now

have spectrum generating meaning, i.e. one can find the systems with the exponentially growing

spectra. Another advantage consists in the possibility to realize q-analogs of the compact unitary

algebras like su(2).
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